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Abstract

A new approach to the calculation of vibrations of weakly damped elastic structures in the medium-
frequency range, called the variational theory of complex rays (VTCR), is being developed. Here, the
extension of this theory to shells of relatively small curvature is considered. Numerical examples of
structures made of plates and shells demonstrate the capabilities of the VTCR.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

A key point in structural design is the modelling and calculation of the vibrational response of
elastic structures. The low-frequency range no longer poses major difficulties, even for complex
structures. For the high-frequency range, there are efficient computational tools which are quite
distinct from those used for low frequencies, and particularly from the statistical energy analysis
(SEA) method in which the spatial aspect disappears almost entirely [1–4].

However, the modelling and calculation of the vibrational response in the medium-frequency
range, which is the topic of this paper, continue to create problems. The difficulty lies in the length
of variation of the phenomena being studied, which is very small compared to characteristic
dimension of the structure. Consequently, if one of the low-frequency methods were to be applied,
apart from the serious numerical difficulties which are already present, the finite element
calculation to be performed would require an unreasonable number of degrees of freedom (DOF).
Nevertheless, much work is currently being done in order to extend the frequency range for these
methods. A first result is that a pollution error affects the accuracy of the finite element solution
[5–7]. Various enhanced finite element approaches have been studied [8–16].
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Difficulties would also appear if one were to apply the SEA method, which is normally used for
high frequencies.

There are few other works concerning the calculation of medium-frequency vibrations. For
rods and beams, the problem is much easier and has been solved [17,18]. Very few works deal with
complex structures, such as plates or shells [18–22]. These methods, which are closely related to
finite element methods, propose reduced bases for the medium-frequency calculation obtained by
a specific treatment in space or over the frequency bandwidth. In the authors’ opinion, with the
exception of the theory introduced in Ref. [23], these methods are not true medium-frequency
methods because the phenomena associated with small variations of length, although not very
significant, remain present. In other words, these methods do not strictly involve the effective
quantities for the time and space scales considered and, therefore, give results which are very
sensitive to data errors. The theory initiated in Ref. [23] is built upon the notions of effective
energy density and effective vibrational energy. This heuristic theory is extremely attractive.
However, despite the improvements already made [24–26], this theory still encounters some
obstacles [27,28].

The alternative approach developed here is called the variational theory of complex rays
(VTCR) and was introduced in Ref. [29]. It is a true medium-frequency method. The most
fundamental aspects of this approach are described in Ref. [30].

The first feature which characterizes the VTCR is the use of a new variational formulation of the
problem to be solved, which was developed in order to allow a priori independent approximations
within the substructures (i.e. approximations which are not required a priori to verify the transmission
conditions in terms of displacements and stresses at the interfaces between substructures). The
transmission conditions are incorporated instead in the variational formulation.

The second feature characterizing the VTCR is the introduction of two-scale approximations
with a strong mechanical meaning: the solution is assumed to be well-described locally in the
neighbourhood of a point X as the superposition of an infinite number of local vibration modes.
These basic modes (which can be interior modes, edge modes or corner modes) verify the laws of
dynamics. All wave directions are taken into account; the unknowns are discretized amplitudes
with relatively long wavelengths.

The last feature characterizing the VTCR is that only effective quantities related to the elastic
energy, the kinetic energy, the dissipation work, the effective displacement, etc., are retained from
the calculated discretized amplitudes.

For bars and beams, the VTCR leads to the exact solution. Results concerning plates are
presented in Ref. [30]. The objective of this paper is to present the extension of this theory to shells
of relatively small curvature. In this case, the rays are curved and obtained using an asymptotic
development with a small parameter h=R (h is the thickness and R the radius of curvature). This
extension was introduced into the program COmplex RAYs for Medium Frequencies (CORAY
MF) developed by Rouch at the LMT Cachan and the results were compared to NASTRAN’s.

2. The reference problem

In order to simplify the presentation, the problem will be formulated for an assembly of two
substructures, but this can be easily generalized to the case of n substructures. Two isotropic
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homogeneous shells with S and S0 as their reference surfaces are considered. @S and @S0 denote
the boundaries of S and S0 respectively. It is required to study the harmonic vibration of these two
structures at a fixed frequency o: All quantities can be defined in the complex domain: an
amplitude QðXÞ corresponds to QðXÞeiot: For each shell, the displacement u ¼ ðv;wÞ (tangential
displacement v; normal displacement w), the moment and the resultant (associated with operators
M and N respectively) are taken into account. The structures are assumed to be slightly curved.
The action of the environment on S is represented in Fig. 1 and consists of a displacement field ud

on @ud
S; a force density Fd on @Fd

S and a surface load fd on S: Similar quantities are defined on S0:
The shell theory used here is Koiter’s linear theory (see Refs. [31–33]). The displacement class is

restricted to U ¼ vþ we3 þ zb (Kirchhoff’s kinematic assumption) with b ¼ =ðwÞ � B v; where B
is the curvature tensor. The transverse deformation energy is neglected.

Define for the structure S the field Sad ¼ fðv;w;N;MÞg such that

ðv;wÞAU finite� energy displacement set;

ðN;MÞAS finite� energy generalized stress set;

div N� BðdivMÞ þ fd ¼ �o2rð1� iyÞv on S;

divðdivMÞ þ TrðNBÞ ¼ �o2rð1� iyÞw on S;

M ¼
h3

12
ð1þ iZÞKCP XðuÞ on S;

N ¼ hð1þ iZÞKCP cðuÞ on S;

XðuÞ ¼ eðbÞ � ½B eðvþ we3Þ
sym;

cðuÞ ¼ eðvþ we3Þ; ð1Þ

where KCP is Hooke’s plane stress operator, r the density, y and Z the (frequency dependent)
damping coefficients and h the thickness of the shell. S0

ad is defined in the same way. The subspaces
Sad and S0

ad associated with the homogenized conditions (fd ¼ f 0d ¼ 0) are denoted Sad0 and S0
ad0:

Thus, the problem to be solved can be expressed as: find ðv;w;N;MÞASad and ðv0;w0;N0;M0ÞAS0
ad
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which verify the boundary conditions:

v ¼ vd on @vd
S; v0 ¼ v0d on @v0

d
S0;

w ¼ wd on @wd
S; w0 ¼ w0

d on @w0
d
S0;

w;n ¼ wnd on @wnd
S; w0

;n ¼ w0
nd on @w0

nd
S0;

N n� BM n ¼ Nd on @Nd
S; N0n0 � BM0n0 ¼ N0

d on @N0
d
S0;

ðdivMÞ?nþ ðn?MtÞ;t ¼ Kd ðdivM0Þ?n0 þ ðn0?M0 t0Þ;t ¼ K 0
d

on @Kd
S; on @K 0

d
S0;

n?Mn ¼ Md on @Md
S; n0?M0n0 ¼ M 0

d on @M 0
d
S0;

½½n?M t

 ¼ 0 on the corner of @S; ½½n0?M0t0

 ¼ 0 on the corner of @S0;

v ¼ v0 on G;

w ¼ w0 on G;

w0
n ¼ w0

;n on G;

Nn� BMn ¼ N0n0 � B0M0n0 on G;

ðdivMÞ?nþ ðn?MtÞ;t ¼ ðdivM0Þ?n0 þ ðn0?M0 t0Þ;t on G;

n?Mn ¼ n0?M0n0 on G: ð2Þ

3. The variational formulation associated with the VTCR

The VTCR is a global formulation of the boundary conditions 2 in displacements as well as in
forces. The theory uses a priori independent approximations within the substructures: find
ðv;w;N;MÞASad and ðv0;w0;N0;M0ÞAS0

ad such that

Re �io
Z
@vd S

dN?
n � ðv� vdÞ

� dL þ
Z
@Nd

S
ðNn �NdÞ

? � dv� dL

"(

�
Z
@wnd

S
dMn � ðw;n � wndÞ

� dL �
Z
@Md

S
ðMn � MdÞ � dw�;n dL

þ
Z
@wd

S
dKnðw � wdÞ

� dL þ
Z
@Kd

S
ðKn � KdÞdw� dL

þ
Z
@v0

d
S
dN0?

n � ðv0 � v0d Þ
� dL þ

Z
@N0

d
S
ðN0

n �N0
dÞ

? � dv0� dL

�
Z
@w0

nd
S
dM 0

n � ðw
0
;n � w0

ndÞ
� dL �

Z
@M0

d
S
ðM 0

n � M 0
dÞ � dw

0�
;n dL

þ
Z
@w0

d
S
dK 0

nðw
0 � w0

dÞ
� dL þ

Z
@K0

d
S
ðK 0

n � K 0
dÞdw

0� dL
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þ
X

@S corner

½½n?Mt

dw� þ
X

@S0 corner

½½n0?M0t0

dw
0�

þ
Z
G

1
2
½ðdNn � dN0

nÞ
?ðv� v0Þ� � ðdMn þ dM 0

nÞðw;n þ w0
;nÞ
�

þ ðdKn � dK 0
nÞðw � w0Þ�
 dL þ

Z
G

1
2
½ðNn þN0

nÞ
?ðdvþ dv0Þ�

� ðMn � M 0
nÞðdw;n � dw0

;nÞ
� þ ðKn þ K 0

nÞðdw þ dw0Þ�
 dL

¼ 0;

8 ðdv; dw; dN; dMÞASad0 and ðdv0; dw0; dN0; dM0ÞAS0
ado;

where Re½A
 designates the real part of A and A� the conjugate of A: It can easily be proved (see
Ref. [29]) that the variational formulation is equivalent to the reference problem if:

* the reference problem has a solution,
* Hooke’s tensor is positive definite,
* the damping factors are greater than zero.

It is possible to reformulate the problem as: find s ¼ ðv;w;N;MÞASad and s0 ¼ ðv0;w0;N0;M0ÞAS0
ad

such that

dðEDðuÞ þ E0
Dðu

0ÞÞ þ/ðs; s0Þ; dðs; s0ÞS ¼ ðLD; dðs; s0ÞÞ;

8dsASad0 8ds0AS0
ad0:

where ED is the dissipation power, LD a linear form and /:; :S a bilinear form defined on the
substructure boundaries which verifies /u; vS ¼ �/v�; u�S:

4. Approximation of the VTCR

4.1. Principle

In order to develop approximations for the VTCR, the subspaces can be defined as Sh
ad and S

0h
ad :

An approximate formulation can be written as: find shASh
ad and s

0hAS
0h
ad such that

dðEDðuhÞ þ E0
Dðu

0hÞÞ þ/ðsh; s
0hÞ; dðsh; s

0hÞS ¼ ðLD; dðsh; s
0hÞÞ

8ðdsh; ds
0hÞASh

ad0  S
0h
ad0:

The VTCR uses two-scale approximations with a strong mechanical meaning by considering three
different types of zones: the interior zone, the edge zones, and the corner zones. For example, in
the vicinity of a point X in the interior zone, the solution is assumed to be well-described locally as
the superposition of an infinite number of local vibration modes which can be written as

UðX;Y;PÞ ¼WðX;Y;PÞeioP�Y;

where both X and Y represent the position vector, but X is associated with a slow variation and Y
with a fast variation. P is a vector which characterizes the local vibration mode. The modes are
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defined explicitly in terms of the fast variable and, therefore, the unknowns consist only of large-
wavelength quantities.

4.2. Zeroth order complex rays

Given a homogeneous substructure, consider, for simplicity’s sake, the case where there is no
force density (fd ¼ 0). The numerical examples presented in this paper use zeroth order complex
rays, i.e., WðX;Y;PÞ ¼WðPÞ: For the plate, neglecting the membrane behaviour, it can be shown
(see Ref. [30]) that a zeroth order complex ray is admissible only if:

ðP?PÞ2 ¼
1� iy
1þ iZ

� �
12rð1� n2Þ

Eh2o2
: ð3Þ

For shells, an explicit form of the vector P cannot be found. However, (1) can be written as:

divðKCPcðuÞ �
h2

12
B divðKCPXðuÞÞ ¼ �

o2r
h

ð1� iyÞ
ð1þ iZÞ

v; ð4Þ

h2

12
divðdivðKCPXðuÞÞÞ þ TrðKCPcðuÞBÞ ¼ �

o2r
h

ð1� iyÞ
ð1þ iZÞ

w; ð5Þ

XðuÞ ¼ eðbÞ � ½B eðvþ we3Þ
sym;

cðuÞ ¼ eðvþ we3Þ;

b ¼ �=ðwÞ � Bv:

A linear equation must be solved with a small parameter multiplying the highest derivative term.
The solution to this equation can be found using an asymptotic analysis (see Ref. [34]). The large
parameter is l ¼ ð12R2=h2Þ1=4; where R represents the smallest radius of curvature of the whole
structure. An asymptotic expansion for the solution can be obtained by assuming the form:

v

w

 !
¼

v0

w0

 !
þ

1

l
v1

w1

 !
þ

1

l2
v2

w2

 !
þy

 !
elf ; ð6Þ

where f is a scalar function. The method consists of substituting the expansion (6) into Eqs. (4)
and (5) and grouping the terms with the same power of l: Eq. (4) associated with the parameter l2

yields

KCPð½v0=f ?
symÞ=f ¼ 0: ð7Þ

The solution to Eq. (7) is

v0 ¼ 0: ð8Þ

Eq. (4) associated with the parameter l; after taking Eq. (8) into account, yields

KCPð½v1=f ?
symÞ=f � KCPðBw0Þ=f ¼ 0 ð9Þ

which can be solved easily. Indeed, if

v1 ¼ a=f þ bR=f ; ð10Þ
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where

R ¼
0 �1

1 0

 !1

;

the solution is

a ¼ w0
=f ? *KCPðBÞ=f

ð=f ?=f Þ2
; ð11Þ

b ¼
2

1� n
=f ? *KCPðBÞR=f

ð=f ?=f Þ2
; ð12Þ

where *KCP ¼ ð1� n2ÞKCP: Finally, Eq. (5) associated with the parameter l0; after taking into
account Eqs. (10)–(12), yields;

�Eð=f ?=f Þ2w0 þ
1

R2
TrðNðv1;w0ÞBÞ ¼ �

o2rð1� n2Þ
hR2

ð1� iyÞ
ð1þ iZÞ

w0; ð13Þ

where Nðv1;w0Þ ¼ *KCP½v1=f ?
sym � *KCPðBw0Þ:
Eq. (9) shows that Nðv1;w0Þ=f ¼ 0: Therefore,

Nðv1;w0Þ ¼ TrðNðv1;w0ÞÞ
ðR=f ÞðR=f Þ?

ðR=f Þ?ðR=f Þ
¼

ðR=f ÞðR=f Þ?

=f ?=f
ð14Þ

and, therefore

TrðNðv1;w0ÞBÞ ¼ �TrðNðv1;w0ÞÞ
=f ?RBR=f

=f ?=f
: ð15Þ

Using Eq. (10) and knowing that

TrðNðv1;w0ÞÞ ¼
ð=f Þ?Nðv1;w0Þð=f Þ

=f ?=f
�
ð=f Þ?RNRðv1;w0Þð=f Þ

=f ?=f

it can easily be shown that

TrðNðv1;w0ÞÞ ¼ ð1� n2Þw0
=f ?RBR=f

=f ?=f
: ð16Þ

Substituting Eqs. (15) and (16) into Eq. (13) and eliminating w0; gives the dispersion
equation:

ð=f ?=f Þ4 ¼
o2rð1� n2Þ

hR2E

ð1� iyÞ
ð1þ iZÞ

ð=f ?=f Þ2 �
ð1� n2Þ

R2
ð=?RBR=f Þ2: ð17Þ
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In this case, l=f ¼ oP: Eqs. (8), (10)–(12) and (17) become

v ¼
1

o
P? *KCPðBÞP

ðP?PÞ2
P�

2

ð1� nÞo
P? *KCPðBÞRP

ðP?PÞ2
RP

� �
w0; ð18Þ

ðP?PÞ4 ¼
1� iy
1þ iZ

� �
12rð1� n2Þ

Eh2o2
ðP?PÞ2 �

12ð1� n2Þ
o4h2

ðP? RBRPÞ2: ð19Þ

A particular complex ray is admissible only if P verifies Eq. (19).

Remark 1. This equation is the same as that in Ref. [35].

Remark 2. If the radius of curvature tends towards infinity (i.e., if the shell tends towards a plate),
B tends towards 0 and this reverts to Eq. (3).

Remark 3. Eq. (18) shows that the tangential displacement is completely determined once the
normal displacement w0 is known. Therefore, only w0 needs to be sought.

Remark 4. It can be seen that the term w alone is present in the development of M: This explains
why Eqs. (18) and (19) are valid with other shell theories, provided that cðuÞ ¼ eðvþ we3Þ: This is
the case for the theories of Love, Timoshenko, Reissner, Naghdi, Berry, Dowell and Mushtari (see
Ref. [33]).

Remark 5. The zeroth order complex ray can be considered as the first term of an asymptotic
development where the small parameter is the factor 1=o: This is a well-known concept in
geometric optics [36,37].

4.3. Zeroth order complex rays for a cylinder

In order to illustrate Eq. (19), consider a cylindrical shell. The co-ordinates to be used are z and
y (the longitudinal and angular variables respectively). R is the radius of curvature. A zeroth order
complex ray is written as WðPÞeioP

?X ¼WðPÞeioðPyRyþPzzÞ: The curvature tensor is

B ¼
�1

R
0

0 0

 !
:

4.3.1. Complex rays for the interior zone
The rays for the interior zone are sought such that they verify Eq. (19) and correspond to a

propagative solution. They can be written as

Py

Pz

 !
¼ PðjÞ

cosj

sin j

 !
;

ARTICLE IN PRESS

H. Riou et al. / Journal of Sound and Vibration 272 (2004) 341–360348



with PðjÞ verifying

P4ðjÞ ¼ P4
0

1� iy
1þ iZ

� �
� P4

C sin4j;

P4
0 ¼

12rð1� n2Þ
Eo2h2

;

P4
C ¼

12ð1� n2Þ
o4h2R2

: ð20Þ

Whenever possible, take ReðPðjÞÞcImðPðjÞÞ in order to enforce propagative behaviour. Fig. 2
shows such rays for j ¼ 0�; j ¼ 45� and j ¼ 90�:

4.3.2. Complex rays for the edge zones

The rays for the edge zones are sought such that they verify Eq. (19) and vanish far away from
the edge. Furthermore, the edge rays must not oscillate faster than the interior rays. One option is
to take ReðP?ðjÞÞt ¼ ReðP?

intðjÞÞt; ImðP?ðjÞÞt ¼ 0 and ImðP?ðjÞÞncReðP?ðjÞÞn (where PintðjÞ
is the ray for the interior zone in the direction j and t and n are respectively the tangent and
normal vectors with respect to the edge). Fig. 3 shows such rays.

4.3.3. Complex rays for the corner zones

The rays for the corner zones are sought such that they verify Eq. (19) and vanish far away from
the corner. They can be written in the same way as the rays for the edge zones, but in a local basis
associated with the corner (the bisector and a perpendicular vector). Fig. 4 shows such rays.
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Fig. 3. Complex rays for the edge zones of the cylinder.
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4.4. The discretized problem

Assuming that the solution can be properly described by a linear combination of zeroth order
complex rays, it can be written as

WðX;YÞ ¼
Z
PAPad

WðPÞ eioP
?Y dsp;

where Pad is the curve which follows P verifying Eq. (19). Pad can be discretized using finite
elements.WðPÞ is assumed to be constant within each element:WðPÞ ¼ HhðPÞ ah (see Fig. 5). ah is
the unknown generalized amplitude. Thus, the VTCR uses two functions defined on different
scales:

* the fast scale (complex exponential), which is calculated explicitly,
* the slow scale, which is discretized.
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Fig. 5. Discretized amplitudes.
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4.5. Generalized amplitude

In order to solve the medium-frequency problem, it is necessary to extract generalized
quantities from the above solution. The spatial distribution of the solution has no physical
meaning from the mechanical point of view. The effective displacement Ueff on a domain D;
which corresponds to the average displacement on the domain D is used:

Ueff ¼
1

D

Z
D

jwða; bÞj dD:

5. Application

5.1. Preliminary remarks: convergence of the finite element and VTCR methods

It is widely accepted that the sizes of the elements in a finite-element-based calculation should
be set in relation to the wavelength. In many cases, engineering practice determines the number of
elements per wavelength for constant, linear or bilinear elements. This number varies between six
and ten. Undoubtedly, this number is closely related to a certain desired accuracy. Often, the
acceptable magnitude of the error depends on the user and on the technical requirements of the
problem (see Ref. [38]). In Ref. [13], the study of the finite element analysis confirmed the common
rule of engineering practice mentioned above. This rule, often formulated with six elements per
wavelength, is written as kho1 (k wave number, h element size), which corresponds to about 6.3
elements per wavelength. This is a reliable rule for finite element approximations at low wave
numbers, but for higher wave numbers it must be modified. In the latter case, studies based on the
dispersion and pollution of the finite element solution [5,7] show that a more reliable rule is to set
k3h2 equal to a constant.

The convergence rate of the finite element method was tested for a simple case. The half-
cylinder defined in Fig. 6 was considered, subjected to a distributed load. The structure’s material
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has the following characteristics: E ¼ 75 GPa; Z ¼ 0:0001; y ¼ 0; n ¼ 0:3; r ¼ 2750 kg=m3;
o ¼ 1800 Hz; Fd ¼ 1 N=m:

The finite element solutions were calculated with the NASTRAN program. Different numbers
of elements per wavelength were tested (1; 2; 3; 4; 5; 8; 10; and 20). All the finite element meshes
consisted of identical quadrilateral shell elements. Since comparison of the solutions with respect
to effective quantities was required, the effective displacement over the whole structure was
calculated for each mesh (which corresponds to the average displacement and, in medium-
frequency analysis, has more physical meaning than the displacement of a point). The results are
presented in Fig. 7.

It can reasonably be assumed that the solution with 20 elements per wavelength is very
accurate. Therefore, the corresponding effective displacement was considered as the reference. It
can be seen that with 1; 2; 3; 4 and 5 elements per wavelength the result is quite poor. With 8 and
10 elements per wavelength, the magnitude of the effective displacement is good. Such mesh sizes
would be acceptable for the calculation of effective quantities. Nevertheless, having looked at the
local displacements, 10 elements per wavelength were chosen. In the following sections, all finite
element solutions obtained with NASTRAN were calculated using this rule.

Concerning the convergence rate of the VTCR, the method on the same case (Fig. 6) was tested.
Different numbers of interior and edge modes were tested. The corner modes were not taken into
account, since these are involved only when a point force is applied at a corner of the structure.
Again, the effective displacement of the whole structure was calculated. The results are given in
Fig. 8 (only the cases 0 and 1 edge mode per edge are shown; more edge modes per edge give even
better results).

Although the structure being considered is very simple, some rules can be derived. The edge
modes are essential. If they are not taken into account, convergence cannot be achieved, even by
increasing the number of interior modes. The influence of the edge modes is primarily on the local
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Fig. 7. Effective displacement of the whole structure of the half-cylinder (Fig. 6) for different numbers of finite elements

per wavelength. 20 elements per wavelength is a sufficiently large number to be considered as the reference.
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displacements, especially along the edges. From here on about 20 interior modes, and 5 edge
modes per edge will often be used.

5.2. The half-cylinder example

Consider the shell structure described in Fig. 6. The mechanical properties are: E ¼ 75 GPa;
Z ¼ 0:0001; y ¼ 0; n ¼ 0:3; r ¼ 2750 kg=m3; o ¼ 1800 Hz; Fd ¼ 1 N=m: The solution obtained by
NASTRAN was used as the reference solution. The mesh seed used in NASTRAN was set to
create 10 elements per wavelength. The solution was obtained with 225,000 DOFs. The VTCR
solution used 80 DOFs (20 interior modes, 5 edge modes per edge and 0 corner mode). It can be
seen in Fig. 9 that the results given by the VTCR are satisfactory: the two solutions in terms of
displacements (distribution of the peaks as well as magnitudes) are similar.

In order to compare the different solutions using an effective quantity (which, in medium-
frequency analysis, has more physical meaning than the displacement of a point), the effective
displacement of the entire structure was calculated. Table 1 shows the comparison in terms of
computation time and effective displacement. The computation time is the sum of the times
required for calculating and inverting the stiffness matrix.

5.3. Use of substructures

Consider the problem of Fig. 6 again. The mechanical properties are: E ¼ 75 GPa; Z ¼ 0:0001;
y ¼ 0; n ¼ 0:3; r ¼ 2750 kg=m3; o ¼ 1800 Hz; Fd ¼ 1 N=m: Now, the half-cylinder is partitioned
into two substructures along the line G; as shown in Fig. 10. The solution obtained by the VTCR
used 160 DOFs (20 interior modes, five edge modes per edge and zero corner mode for each
substructure). The results are satisfactory. On the right-hand side of Fig. 11 (axial separation), a
small discontinuity at the interface G can be seen. Thanks to the variational formulation, the
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Fig. 8. Effective displacement of the whole structure of the half-cylinder (Fig. 6) for different numbers of modes using

the VTCR. The effective displacement found using NASTRAN is shown in grey.
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Fig. 9. Results for the half-cylinder problem (Fig. 6): VTCR solution (left) and NASTRAN solution (right). These two

solutions are similar in local displacement: the distribution of the peaks is the same and their magnitudes are about

1:0 10�8 for the VTCR solution and 1:2 10�8 for the NASTRAN solution. The maximum magnitude is found on

the edge where the force is applied: 1:4 10�8 for the VTCR solution and 2:9 10�8 for the NASTRAN solution. The

slight difference at the edge is due to the fact that for the VTCR the boundary conditions are verified in an average

sense.

Table 1

Results for the half-cylinder problem (Fig. 6): comparison in terms of computation time and effective displacement

VTCR NASTRAN

DOFs 80 225,000

Computation time 3 s 37 s

Effective displacement (m) 6:62 10�9 m 6:79 10�9 m

Fig. 10. The geometrical model with substructuring: the cylinder is fixed at one end and a force density Fd is applied at

the other end. It is partitioned into two shell substructures along a line G: orthoradial on the left and axial on the right.
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transmission conditions at the interface G are verified in an average sense. More degrees of
freedom would provide better accuracy.

5.4. Curvature effect

One characteristic of the dispersion equation (19) for shells compared to the dispersion
equation (3) for plates is that for certain mechanical properties and frequencies there are no
modes for the interior zone. Indeed, assuming for the sake of simplicity that there is no damping
ðy ¼ Z ¼ 0Þ; Eq. (20) becomes

P4ðjÞ ¼ P4
0 � P4

C sin4 j:

If ooðE=rR2Þ1=2; then PC > P0 and for j ¼ 90� P4ðjÞo0: In other terms, the longitudinal
interior mode necessarily vanishes. The same result can be obtained starting from the shell
equation (1). This phenomenon is not due to the asymptotic development; it is a structural
property. The additional term in Eq. (19) compared to Eq. (3) is essential. If it is considered that
the shell behaves locally like a plate, Eq. (3) must be used and this structural property cannot be
observed.

The next example illustrates this case. Consider the shell described in Fig. 12. The mechanical
properties are: E ¼ 75 GPa; Z ¼ 0:0001; y ¼ 0; n ¼ 0:3; r ¼ 2750 kg=m3; o ¼ 500 Hz; Fd ¼
1 N=m: Then ðE=rR2Þ1=2 ¼ 5222 rad s�1 ¼ 831 Hz: Therefore, the conditions for the longitudinal
modes to vanish are met. Indeed, it is easy to see that the only possible longitudinal modes are
edge modes. Therefore, this example enables the phenomenon just described to be observed.
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Fig. 11. Results for the half-cylinder using substructures (Fig. 10): orthoradial partitioning (left) and axial partitioning

(right). Both solutions were obtained with the VTCR (which allows substructures) and should be compared with the

solution given by NASTRAN (on the right of Fig. 9). The solutions in displacement (distribution and amplitudes) are

similar.
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The solution given by NASTRAN was used as the reference solution. The VTCR solution used
88 DOFs (24 interior modes, five edge modes per edge and zero corner mode). Fig. 13 shows both
the VTCR and the NASTRAN solutions. The two solutions are quite similar (there is no
vibrational state in the interior domain.)

ARTICLE IN PRESS

Fig. 12. Shell structure showing the curvature effect: the cylinder is fixed at the bottom and a radial force density Fd is

applied at the top.

Fig. 13. Result for the half-cylinder with curvature effect (Fig. 12): the VTCR solution (left) and the NASTRAN

solution (right) are similar. The NASTRAN solution shows that there is no vibrational state in the interior domain. For

the VTCR solution, Eq. (19) shows that the interior modes must vanish and, consequently, that there can be no

vibrational state in the interior domain.
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If Eq. (3) is used (i.e., the shell is seen locally as a plate rather than using Eq. (19), which is
suitable for shells), there can be longitudinal modes. The corresponding VTCR solution obtained
with the same number of degrees of freedom, shown in Fig. 14, is quite poor. Through this
example, the need for the additional term in Eq. (19) because of the curvature can be seen.

5.5. Example of a three-dimensional (3-D) assembly

The geometry defined in Fig. 15 is a 3-D assembly of cylindrical shells and plates. The
mechanical properties are: E ¼ 75 GPa; Z ¼ 0:0001; y ¼ 0; n ¼ 0:3; r ¼ 2750 kg=m3; o ¼ 1000 Hz;
Fd ¼ 1 N=m:

The solution obtained by NASTRAN was used as the reference solution. The mesh seed used in
NASTRAN was set to create 10 elements per wavelength. The solution was obtained with
1,200,000 DOFs. For the VTCR solution, the structure was divided into three parts (Shell 1, Shell
3 and Plate 2). The calculation used 264 DOFs (24 interior modes, five edge modes per edge and
zero corner mode for each substructure). Fig. 16 shows that the results given by the VTCR are
good: the two solutions in displacement (distribution and amplitude) are similar.

In order to compare the different solutions with respect to an effective quantity, the effective
displacement in each substructure (Shell 1, Shell 3 and Plate 2 (see Fig. 15)) was calculated.
Table 2 shows the comparison in terms of computation time and effective displacement. The
computation time is the sum of the times required for calculating and inverting the stiffness
matrix.
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Fig. 14. Result for the half-cylinder with curvature effect (Fig. 12) using Eq. (3) instead of Eq. (19), i.e., without taking

into account the curvature effect in shells. A vibrational state in the interior domain is obtained, even though in reality it

does not exist (see the NASTRAN solution in Fig. 13). This unacceptable solution shows the importance of the

curvature term in Eq. (19).
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Fig. 16. Results for the 3-D assembly (Fig. 15): the VTCR solution (left) and the NASTRAN solution (right) are

similar.

Fig. 15. Geometry of the 3-D assembly. A force density Fd is applied on one side of Shell 1. All other boundaries are

fixed.

Table 2

Results for the 3-D assembly (Fig. 15): comparison in terms of computation time and effective displacement

VTCR NASTRAN

DOFs 264 1,200,000

Computation time 10 s 2 min 32 s

Effective displacement (m)

Shell 1 1:78 10�8 1:62 10�8

Plate 2 2:57 10�8 2:52 10�8

Shell 3 1:01 10�8 1:09 10�8
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It can be seen that the VTCR gives accurate results at a very low cost. The VTCR can calculate
any number of homogeneous substructures (plates, shells, etc.) with no particular difficulty.

6. Conclusions

The proposed approach, called the variational theory of complex rays, was introduced in order
to calculate the vibratory response of weakly damped, slightly curved elastic structures in the
medium-frequency range. It is a very general approach with a strong mechanical meaning. Since
any industrial structure can reasonably be considered as an assembly of beams (for which the
VTCR gives the exact solution), plates and shells, the VTCR seems to be a promising theory for
medium-frequency applications.
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